Periodic Table [S]

1.		riodic Table was originally developed as a list of atoms arranged in terms of their mass emical reactivity. We now think of it as a list of elements.
	a.	What order are the elements listed? [2]
	b.	State the name and symbol of the element in Period 5, Group 4: [2]
	c.	Elements can be classified as metals or non-metals.
		i. State two properties of metals: [2]
		ii. An element was combusted in oxygen and the product of the reaction
		dissolved in water to form a solution with pH 3. What type of element was it?
		[1]
	d	Explain why, in terms of the arrangement of electrons, two elements in the same Group
	u.	undergo similar chemical reactions: [2]
	e.	State the name and symbol of an element that you would expect to have very small
		atoms and be chemically inert: [2]

Group	1 metals a	III highly reactive.
a.	Sodium r	reacts violently with water to produce an alkaline solution.
	i.	Write a balanced equation, including state symbols, for the reaction of sodium
		with water: [3]
	ii.	State three observations you would make during this reaction: [3]
	iii.	Would you expect rubidium to react more or less violently than sodium? [1]
		<u></u>
	iv.	Explain your answer to part iii: [4]
b.	Potassiui	m is so reactive that it tarnishes when exposed to air within seconds.
	i.	Write a balanced equation for the formation of potassium oxide: [2]
	::	State and explain the colour universal indicator would turn if added to a
	ii.	State and explain the colour universal indicator would turn if added to a solution of potassium oxide in water: [2]

2.

3.	The Gr	oup 7 elements (the Halogens) are a series of reactive non-metals.					
	a.	a. The halogens each have distinctive physical properties. State the difference betwee					
		bromine and iodine in terms of:					
		i. S	State at room temperature and pressure: [2]				
		ii. C	Colour: [2]				
	b.	Hydrogen chloride is a colourless gas that dissolves in water.					
		i. V	Write a balanced equation, with state symbols, for the formation of hydrogen				
		C	hloride: [3]				
		ii. S	State the colour change you would observe during the reaction in part i: [2]				
		iii. E	Explain why hydrogen chloride dissolved in water turns blue litmus paper red				
		b	out hydrogen chloride dissolved in methylbenzene does not: [4]				
	C.	Fluorine is	a yellow gas at room temperature and pressure.				
		i. S	State whether it is more or less reactive than iodine: [1]				

ii. Explain your answer to part i: [4]
d. You are provided with bottles of the following solutions. Explain how, using the word
oxidise, you could show that iodine is less reactive than bromine: [5]
KCl(aq), KBr(aq), Kl(aq)
$Cl_2(aq)$, $Br_2(aq)$, $l_2(aq)$
4. Oxygen is a reactive gas at room temperature and pressure.
a. It can be produced by the decomposition of hydrogen peroxide (H_2O_2) :
i. Write a balanced equation for this reaction: [2]
ii. State a suitable catalyst for this reaction: [1]
b. State the percentage of oxygen in air at atmospheric pressure: [1]

c.	Other elements can combust in oxygen.			
	i.	Write a balanced equation for the combustion of sulphur: [2]		
	ii.	This reaction occurs as a side-reaction in various industrial processes. Explain how it contributes towards acid rain: [2]		
d.	Write a b	palanced equation for the combustion of hydrogen: [2]		
e. Carbon also combusts in plentiful oxygen to form carbon dioxide.				
	i.	State two uses for carbon dioxide: [2]		
	ii.	Describe one other way, including a balanced equation, to produce carbon dioxide: [3]		
	iii.	Describe the test for carbon dioxide: [2]		

Periodic Table [S]

- 1. The Periodic Table was originally developed as a list of atoms arranged in terms of their mass and chemical reactivity. We now think of it as a list of elements.
 - a. What order are the elements listed? [2]

```
increasing... [1] ... atomic number [1]
```

b. State the name and symbol of the element in Period 5, Group 4: [2]

```
Sn [1], tin [1]
```

- c. Elements can be classified as metals or non-metals.
 - i. State two properties of metals: [2]
 conduct electricity, malleable, ductile, alkaline/basic oxide, dense
 [1] each, maximum [2]
 - ii. An element was combusted in oxygen and the product of the reaction dissolved in water to form a solution with pH 3. What type of element was it?[1]non-metal [1]
- d. Explain why, in terms of the arrangement of electrons, two elements in the same Group undergo similar chemical reactions: [2]

chemical reactions depend on outer-shell electrons [1]

two elements in the same group have the same number of outer-shell electrons [1]

e. State the name and symbol of an element that you would expect to have very small atoms and be chemically inert: [2]

He [1], helium [1] (allow Ne, neon although clearly He is smaller)

- 2. Group 1 metals all highly reactive.
 - a. Sodium reacts violently with water to produce an alkaline solution.
 - i. Write a balanced equation, including state symbols, for the reaction of sodium with water: [3]
 2Na(s) + 2H₂O(I) → 2NaOH(aq) + H₂(g) [formulae, balance, state symbols]
 - ii. State three observations you would make during this reaction: [3]fizzing, Na floats, Na moves around, Na disappears, heat given off[1] each, maximum [3]
 - iii. Would you expect rubidium to react more or less violently than sodium? [1]more violently [1]
 - iv. Explain your answer to part iii: [4]
 rubidium has more electron shells [1]
 so its outer electron is further from the nucleus [1]
 which means it is held there less strongly [1]
 and is therefore more easily lost [1]
 - b. Potassium is so reactive that it tarnishes when exposed to air within seconds.
 - i. Write a balanced equation for the formation of potassium oxide: [2] $4K + O_2 \rightarrow 2K_2O \text{ [formulae, balance]}$
 - ii. State and explain the colour universal indicator would turn if added to a solution of potassium oxide in water: [2]purple/blue [1], because solution is alkaline [1]

- 3. The Group 7 elements (the Halogens) are a series of reactive non-metals.
 - a. The halogens each have distinctive physical properties. State the difference between bromine and iodine in terms of:
 - i. State at room temperature and pressure: [2]bromine is liquid [1], iodine is solid [1]
 - ii. Colour: [2]bromine is red/brown [1], iodine is grey (NOT purple) [1]
 - b. Hydrogen chloride is a colourless gas that dissolves in water.
 - i. Write a balanced equation, with state symbols, for the formation of hydrogen chloride: [3]
 - $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ [formulae, balance, state symbols]
 - ii. State the colour change you would observe during the reaction in part i: [2]green [1] to colourless [1]
 - iii. Explain why hydrogen chloride dissolved in water turns blue litmus paper red but hydrogen chloride dissolved in methylbenzene does not: [4]
 HCl dissociates to give H⁺ in water [1]
 so it is acidic and turns blue litmus to red [1]
 HCl does not dissociate in methylbenzene so there's no H⁺ [1]
 so it is not acidic and blue litmus remains the same colour [1]
 - c. Fluorine is a yellow gas at room temperature and pressure.
 - i. State whether it is more or less reactive than iodine: [1]more reactive [1]

- ii. Explain your answer to part i: [4]
 fluorine has less shells [1]
 so the incoming electron is closer to the nucleus [1]
 so its attraction to the nucleus is greater [1]
 so it is more readily added to the atom [1]
- d. You are provided with bottles of the following solutions. Explain how, using the word oxidise, you could show that iodine is less reactive than bromine: [5]
 KCl(aq), KBr(aq), Kl(aq)
 Cl₂(aq), Br₂(aq), l₂(aq)
 add Br₂(aq) to Kl(aq) [1]
 the colour changes from orange [1] to brown (NOT purple) [1]

- 4. Oxygen is a reactive gas at room temperature and pressure.
 - a. It can be produced by the decomposition of hydrogen peroxide (H_2O_2) :
 - i. Write a balanced equation for this reaction: [2]

 $2H_2O_2 \rightarrow 2H_2O + O_2$ [formulae, balance]

this shows that iodine has been oxidised by bromine [1]

so iodine must be less reactive than bromine [1]

- ii. State a suitable catalyst for this reaction: [1]iron oxide, manganese oxide, copper oxide [1 for any]
- b. State the percentage of oxygen in air at atmospheric pressure: [1]

c.	Other	elements	can	combust	in	oxygen.
----	-------	----------	-----	---------	----	---------

i. Write a balanced equation for the combustion of sulphur: [2]

 $S + O_2 \rightarrow SO_2$ (or $2S + 3O_2 \rightarrow 2SO_3$) [formulae, balance]

ii. This reaction occurs as a side-reaction in various industrial processes. Explain

how it contributes towards acid rain: [2]

SO₂ (or SO₃) dissolves in rainwater [1]

to form an acidic solution [1]

d. Write a balanced equation for the combustion of hydrogen: [2]

 $2H_2 + O_2 \rightarrow 2H_2O$ [formulae, balance]

- e. Carbon also combusts in plentiful oxygen to form carbon dioxide.
 - i. State two uses for carbon dioxide: [2]

carbonated drinks [1]

fire extinguishers [1]

ii. Describe one other way, including a balanced equation, to produce carbon

dioxide: [3]

heat a metal carbonate [1] OR add an acid to a metal carbonate [1]

collect the gas that forms [1]

under water [1] OR by displacement of water [1]

iii. Describe the test for carbon dioxide: [2]

Bubble through limewater [1], which goes cloudy [1]